RESEARCH ARTICLE

Developmental Science 🐝 WILEY

Increasing audiovisual speech integration in autism through enhanced attention to mouth

Shuyuan Feng^{1,2} | Qiandong Wang³ | Yixiao Hu² | Haoyang Lu^{2,4,5} | Tianbi Li² | Ci Song² | Jing Fang⁶ | Lihan Chen^{2,7} | Li Yi^{2,8}

¹Institute for Applied Linguistics, School of Foreign Languages, Central South University, Changsha, Hunan, China

²School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China

³Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China

⁴Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China

⁵Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China

⁶Qingdao Autism Research Institute, Qingdao, China

⁷National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing, China

⁸IDG/McGovern Institute for Brain Research at PKU, Peking University, Beijing, China

Correspondence

Li Yi and Lihan Chen, Peking University, 5 Yiheyuan Road, Beijing, 100871, China. Email: yilipku@pku.edu.cn, clh@pku.edu.cn

Funding information

Philosophy and Social Science Foundation of Hunan Province, Grant/Award Number: 19YBO109: Outstanding Youth Foundation of Education Department of Hunan Province. Grant/Award Number: 21B0004; National Natural Science Foundation of China. Grant/Award Numbers: 31871116. 62061136001, 31861133012, 32271116; Natural Science Foundation of Hunan Province, Grant/Award Number: 2022JJ40580; Key-Area Research and Development Program of Guangdong Province, Grant/Award Number: 2019B030335001

Abstract

Autistic children (AC) show less audiovisual speech integration in the McGurk task, which correlates with their reduced mouth-looking time. The present study examined whether AC's less audiovisual speech integration in the McGurk task could be increased by increasing their mouth-looking time. We recruited 4- to 8-year-old AC and nonautistic children (NAC). In two experiments, we manipulated children's mouthlooking time, measured their audiovisual speech integration by employing the McGurk effect paradigm, and tracked their eye movements. In Experiment 1, we blurred the eyes in McGurk stimuli and compared children's performances in blurred-eyes and clear-eyes conditions. In Experiment 2, we cued children's attention to either the mouth or eyes of McGurk stimuli or asked them to view the McGurk stimuli freely. We found that both blurring the speaker's eyes and cuing to the speaker's mouth increased mouth-looking time and increased audiovisual speech integration in the McGurk task in AC. In addition, we found that blurring the speaker's eyes and cuing to the speaker's mouth also increased mouth-looking time in NAC, but neither blurring the speaker's eyes nor cuing to the speaker's mouth increased their audiovisual speech integration in the McGurk task. Our findings suggest that audiovisual speech integration in the McGurk task in AC could be increased by increasing their attention to the mouth. Our findings contribute to a deeper understanding of relations between face attention and audiovisual speech integration, and provide insights for the development of professional supports to increase audiovisual speech integration in AC.

KEYWORDS

attention to mouth, audiovisual speech integration, autism, eye movements, McGurk effect

Developmental Science. 2022;e13348. https://doi.org/10.1111/desc.13348

Highlights

- The present study examined whether audiovisual speech integration in the McGurk task in AC could be increased by increasing their attention to the speaker's mouth.
- Blurring the speaker's eyes increased mouth-looking time and audiovisual speech integration in the McGurk task in AC.
- Cuing to the speaker's mouth also increased mouth-looking time and audiovisual speech integration in the McGurk task in AC.
- Audiovisual speech integration in the McGurk task in AC could be increased by increasing their attention to the speaker's mouth.

1 | INTRODUCTION

Audiovisual speech integration entails the combination of auditory and visual parts of a speech into a coherent representation (Altieri et al., 2011). Reduced audiovisual integration in McGurk tasks has been reported in autistic children (AC) (Bebko et al., 2014; Iarocci et al., 2010; Irwin et al., 2011; Mongillo et al., 2008; Stevenson et al., 2014). Autism is a neurodevelopmental condition characterized by difficulties in social interactions and communications, as well as restricted and repetitive patterns of behavior (DSM-5; American Psychiatric Association, 2013). The reduced audiovisual speech integration in AC was associated with language or communication difficulties (Feldman et al., 2018).

Audiovisual speech integration has been measured by susceptibility to the McGurk effect, which occurs when the auditory part of a phoneme is dubbed onto the mouth movements of another (visually presented) phoneme, leading to a fused perception of a new phoneme (McGurk & MacDonald, 1976). For example, when the auditory phoneme "ba" was dubbed onto the visual mouth movements of "ga," people often reported a fused perception of "da" (McGurk & Mac-Donald, 1976). Using the McGurk effect paradigm, a series of studies investigated audiovisual speech integration in AC (Bebko et al., 2014; larocci et al., 2010; Irwin et al., 2011; Mongillo et al., 2008; Stevenson et al., 2014; Woynaroski et al., 2013). A recent meta-analysis summarized that AC have less audiovisual speech integration (i.e., less McGurk effect; Zhang et al., 2019).

Audiovisual speech integration, a typical form of multisensory integration, has been linked to and can be modulated by attention (e.g., Talsma et al., 2010). Some studies have explored how attention affects audiovisual speech integration by employing the McGurk effect (Alsius et al., 2005, 2007; Tiippana et al., 2004). The McGurk effect was weakened by dual tasks that divided participants' attention, in which observers were distracted by task-irrelevant discrimination of auditory (Alsius et al., 2005), visual (Alsius et al., 2005; Tiippana et al., 2004), or tactile stimuli (Alsius et al., 2007). Other studies have further revealed the possible relationship between the McGurk effect and participants' visual attention (e.g., Feng et al., 2021; Gurler et al., 2015). It has been further proved that the strength of the McGurk effect was correlated with individuals' attention to the speaker's core facial features, such as

their attention to the speaker's mouth (i.e., mouth-looking time; Gurler et al., 2015). Specifically, the McGurk effect became stronger as the looking time for the speaker's mouth increased in individuals. However, AC display shorter mouth-looking time in various social situations, including recognizing faces (Chawarska & Shic, 2009) and viewing emotional faces or videos of talking faces (de Wit et al., 2008; Nakano et al., 2010). Given what we know about the patterns of social attention in AC, especially the reduced attention to the core facial features (i.e., eves, mouth, and nose; Pelphrev et al., 2002; Shic et al., 2014). the patterns of social attention in AC are likely relevant to audiovisual processing in autism. Indeed, a recent study found that the length of mouth-looking time in ASD could positively predict the strength of audiovisual speech integration measured by McGurk tasks (Feng et al., 2021), implying the possibility of enhancing audiovisual speech integration in children with ASD by increasing their mouth-looking time.

Attention to faces or social situations can be modulated by measures such as blurring, cuing, and gaze-contingent presentation (Grynszpan et al., 2012; Moriuchi et al., 2017; Wang et al., 2013, 2020). Studies have employed the gaze-contingent paradigm to increase participants' attention to the speaker's face (Wang et al., 2013), used both blurring and gaze-contingent windows to confine participants' attention to their focal vision (Grynszpan et al., 2012; Wang et al., 2020), or even directly cued the participants' initial fixation to a region on faces by presenting a prestimulus cueing target (Moriuchi et al., 2017). These measures successfully manipulated participants' attention by increasing their proportional face-looking time (Wang et al., 2013), directing their first fixation to a region (Moriuchi et al., 2017), or confining their attention to the focal vison area (Grynszpan et al., 2012; Wang et al., 2020).

In view of the successful manipulation of visual attention with corresponding changes in looking time, the present study aimed to investigate whether enhancing attention to the mouth in AC could increase audiovisual speech integration. This investigation would directly shed light on supports for audiovisual speech integration in AC. To fulfill this aim, we designed two experiments to increase the mouth-looking time and potentially boost audiovisual speech integration in AC employing the McGurk effect paradigm. Experiment 1 included a clear-eyes condition and a blurred-eyes condition, in which the eye region of the Developmental Science 🔬

			N	Male/female	Mean age in years (SD)	IQ (WPPSI-IV)
Experiment 1	Autistic		30	30/0	5.65 (0.77)	111.00 (11.82)
	Nonautistic		30	30/0	5.73 (0.51)	111.30 (10.73)
	t (p)	Autistic vs. Nonautistic	N/A	N/A	-0.45 (0.65)	-0.10 (0.92)
Experiment 2	Autistic		40	40/0	5.55 (0.68)	113.00 (10.56)
	Nonautistic		42	42/0	5.71 (0.59)	109.29 (10.37)
	t (p)	Autistic vs. Nonautistic			-1.14 (.26)	1.61 (0.11)

TABLE 1Participants' characteristics of the autistic and nonautistic groups

Note. IQ was measured using the Chinese version of the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV). All ps > 0.05.

speakers was blurred. We hypothesized that (a) blurring the speaker's eyes could weaken the attractiveness of eye regions, and thus could decrease the eyes-looking time and increase the mouth-looking time; and (b) this increased mouth-looking time would increase audiovisual speech integration in the McGurk task in AC. Experiment 2 included three conditions: cue-to-mouth, cue-to-eyes, and free-viewing. We directed children's attention to the mouth in the cue-to-mouth condition and to the eyes in the cue-to-eyes condition and allowed them to view the screen freely in the free-viewing condition. We hypothesized that, compared with the free-viewing condition, (a) the cue-to-mouth condition would increase the mouth-looking time and the cue-to-eyes condition would increase the eyes-looking time in AC; and (b) the increased mouth-looking time in the cue-to-mouth condition would increase the audiovisual speech integration in the McGurk task in AC, but the increased eyes-looking time in the cue-to-eyes condition would not change the audiovisual speech integration in the McGurk task in AC because of their difficulty in processing the eye information (Baron-Cohen et al., 1997).

2 | EXPERIMENT 1

In this experiment, we set a clear-eyes condition and a blurredeyes condition to explore whether blurring the speaker's eyes could enhance children's audiovisual speech integration in the McGurk task. In these two conditions, we measured children's audiovisual speech integration in the McGurk task and tracked their eye movements.

2.1 | Method

2.1.1 | Participants

We recruited 30 Mandarin-speaking AC (age range: 4.55-7.84 years; all boys) who were from a specialized school for autism. We also recruited 30 mandarin-speaking nonautistic children (NAC; age range: 4.95-6.79 years; all boys) as the comparison group from a kindergarten as well as an elementary school. All AC were diagnosed in licensed hospitals by professional pediatricians according to the criteria of the DSM-V (American Psychiatric Association, 2013). Autism diagnosis was further confirmed according to the Chinese version of the Autism Spectrum Quotient: Children's Version (AQ-Child; Auyeung et al., 2008). In addition, autism screening in the comparison group was also conducted by employing AQ and all children in the comparison group were below the AQ cut-off score (Auyeung et al., 2008). The two groups were matched in both age and intelligence quotient (IQ), revealed by independent samples *t*-tests (see Table 1 for detailed information). IQ was measured using the Chinese version of the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV; Wechsler, 2014). The study was approved by the research ethics committee of Peking University. Parents of all children signed a written informed consent form before the experiment.

2.1.2 | Stimuli

We used the McGurk effect paradigm (McGurk & MacDonald, 1976) and used syllables identical to those used by Feng et al. (2021) to measure children's audiovisual speech integration in the present study. The experiment included two conditions: clear- and blurred-eyes. Each condition contained congruent and incongruent stimuli. The congruent stimuli were videos of a female speaker uttering "ba" and "ga." The incongruent stimuli were obtained by dubbing the visual "ga" onto the auditory "ba" ("AbVg": auditory "ba" + visual "ga"), which generally evoked the McGurk percept of "da" (McGurk & MacDonald, 1976). Stimuli in the clear-eyes conditions were the original videos we recorded, and stimuli in the blurred-eyes condition were modified by blurring the speaker's eye region in the original videos. Modifications of the stimuli were accomplished using Adobe Premiere Software Pro CS6.0. In the software, we selected Gaussian blur and set the blur parameter to 75%. As the blur parameter increases, the speaker's eye region becomes more blurred. For the practice session, we also prepared three stimuli: "pa," "ka," and "ApVk" (auditory "pa" + visual "ka"). "ApVk" normally evoked the McGurk percept of "ta." The resolution of the videos was 1280×720 pixels, with a frame rate of 25 frames/s. We obtained written consent from the female speaker to use these videos.

2.1.3 | Procedures

Children were seated approximately 60 cm from a 21.5-inch Dell screen (resolution: 1920 \times 1080 pixels) in a quiet room.

FIGURE 1 Procedures of a sample trial in Experiment 1 (a) and Experiment 2 (b). *Note*. (a) This figure shows the procedure of a trial in Experiment 1. First, a fixation was presented at the center of the screen for 1000 ms. Then, a black screen was displayed for 800 ms. Subsequently, the stimulus was presented. Finally, a black screen was shown, and the children responded. (b) This figure shows the procedure of a sample trial in the cue-to-mouth condition in Experiment 2. First, a black screen with an oval at the position where the speaker's mouth appeared was presented. Then, the stimulus was presented once the children kept fixating on the oval area for 500 ms. Finally, a black screen was displayed until the children responded

The stimuli were displayed at the center of the screen using MAT-LAB (The MathWorks, Natick, MA) and Psychotoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). Sounds were presented through two speakers located on the two sides of the screen. Children were required to perform the McGurk task by reporting what the speaker said, and their eye movements were recorded using a Tobii X 120 eye tracker (sampling rate: 120 Hz).

Children performed a practice session to familiarize themselves with the McGurk task before the formal experiment. At the beginning of the formal experiment, the children's eye movements were calibrated using Tobii's five-point calibration method. The calibration was accepted only when all five points showed a good fit, with error vectors smaller than 0.5 degree of the visual angle. As mentioned above, the experiment consisted of a clear-eyes condition and a blurred-eyes condition. Each condition included four trials of congruent "ba," four trials of congruent "ga," and 12 trials of incongruent "AbVg" (auditory "ba" + visual "ga"). Each trial began with a black fixation at the center of the screen for 1000 ms, and children were asked to look at it. Then, a black screen was displayed for 800 ms. Subsequently, the stimulus was presented. Finally, a black screen was displayed until the children responded. Children's responses were recorded by the experimenter, that is, by pressing "b," "d," and "g" on the keyboard for responses of "ba," "da," and "ga" respectively. For a sample trial procedure, please refer to Figure 1a. The 20 trials in each condition were presented in random order, and the order of the two conditions was counterbalanced among children. Children took rest between the conditions. The experiment lasted for approximately 25 min.

2.1.4 | Data analysis

Eye movement data analysis. We defined five areas of interest (AOIs) for the speaker's face: the whole face, the eyes (left eye and right eye),

FIGURE 2 Sample AOIs used in the eye movement data analysis. *Note.* This figure shows the five AOIs in the eye-movement data analysis. The five AOIs included the whole face, eyes (left eye and right eye), mouth, nose, and other areas (the area on the face excluding eyes, nose, and mouth)

the mouth, the nose, and the other area (the area on the face excluding eyes, nose, and mouth; see Figure 2). We extracted fixations from the raw gaze data, as specified by Tobii (I-VT fixation filter; Olsen, 2012). In particular, the minimum fixation duration was set at 60 ms within a velocity of 30 deg/s. Then, we obtained the fixation data, which included the onset, the offset, and the position (x-coordinate, ycoordinate in pixels) of each fixation. For each trial, we extracted the fixation data during the time the video was displayed on the screen (i.e., from the time point that the video appeared on the screen to the time point that the video disappeared on the screen) and calculated the duration of each fixation by using the offset to minus the onset. After that, we selected fixations within each AOI and summed their durations separately, obtaining the total looking time on each AOI. Finally, we calculated the average total looking time on each AOI for each participant and for each group. We chose looking time as the dependent variable by referring to Gurler et al. (2015). In this study, Gurler et al. used looking time as the dependent variable and found that mouth-looking time was positively correlated with McGurk effect. Moreover, looking time was widely used in previous studies to reflect participants' attention to a specific AOI (e.g., Chawarska & Shic, 2009; Tsang et al., 2022).

Behavioral data analysis. We analyzed the incongruent trials and excluded congruent trials as they were used as filler trials. For the incongruent trials, children made three types of responses: auditory responses "ba," visual responses "ga," and fused responses "da" (McGurk response). By referring to Stevenson et al. (2014), we took the fused response "da" as the McGurk percept. We computed children's percentages of each type of response in both conditions. We conducted the following analyses using non-parametric statistical analyses (i.e., repeated measures permutation ANOVA, Wilcoxon signed ranks tests, Mann-Whitney U-test) as the data violated the normal distribution.

2.2 Results

2.2.1 Blurring eves decreased eves-looking time and increased mouth-looking time

To explore whether blurring eyes could change looking time in the two groups on the speaker's eyes and mouth, we conducted a $2 \times 2 \times 2$ repeated measures ANOVA on looking time with Condition (clear-eyes vs. blurred-eyes) and Region (eyes vs. mouth) as the within-subject factors, and Group (AC vs. NAC) as the between-subject factor using the R package "bruceR." We found a significant main effect of Condition, F(1, 58) = 4.23, p = 0.04, $\eta_p^2 = 0.07$, a significant main effect of Region, F(1, 58) = 24.07, p < 0.001, $\eta_p^2 = 0.29$, and a significant main effect of Group, F(1, 58) = 13.13, p = 0.001, $\eta_p^2 = 0.19$. It also showed a significant Region \times Group interaction, F(1, 58) = 8.73, p = 0.005, $\eta_p^2 = 0.13$, and a significant Condition × Region interaction, $F(1, 58) = 33.69, p < 0.001, \eta_p^2 = 0.37$. Neither the Condition × Group interaction, F(1, 58) = 0.05, p = 0.82, $\eta_p^2 = 0.001$, nor the Condition × Region × Group interaction, F(1, 58) = 0.07, p = 0.80, $\eta_p^2 = 0.001$, was significant.

For the significant Condition × Region interaction, we further conducted simple effect analyses to test the condition difference of children's looking time on the eyes and the mouth. We found that children's looking time was significantly different between the cleareyes condition and blurred-eyes condition for both the eyes, F(1, 58) = 31.83, p < 0.001, $\eta_p^2 = 0.35$, and the mouth, F(1, 58) = 15.25, p < 0.001, $\eta_p^2 = 0.21$. The significant difference in the eyes indicates that the eyes-looking time of the two groups decreased in the blurredeyes condition ($M_{AC} = 0.25$, $SD_{AC} = 0.17$; $M_{NAC} = 0.24$, $SD_{NAC} = 0.23$; AC for autistic group and NAC for nonautistic group) compared to

the clear-eyes condition (M_{AC}\,=\,0.48,\,SD_{AC}\,=\,0.36;\,M_{NAC}\,=\,0.46, $SD_{NAC} = 0.36$; see Figure 3a). The significant difference in the mouth area indicates that the mouth-looking time of the two groups increased in the blurred-eyes condition ($M_{AC} = 0.55$, $SD_{AC} = 0.36$; $M_{NAC} = 0.85$, $SD_{NAC} = 0.32$) compared to the clear-eyes condition ($M_{AC} = 0.39$, $SD_{AC} = 0.24$; $M_{NAC} = 0.72$, $SD_{NAC} = 0.35$; see Figure 3b).

For the significant Region × Group interaction, we also conducted simple analyses to test the group difference of the two groups' looking time on the eyes and the mouth. The results showed that the autistic group and nonautistic group spent similar time viewing the eyes, $F(1, 58) = 0.06, p = 0.81, \eta_p^2 = 0.001$, but significantly different time viewing the mouth, F(1, 58) = 17.57, p < 0.001, $\eta_p^2 = 0.23$. The significant difference in mouth-looking time indicates that the autistic group ($M_{blur} = 0.55$, $SD_{blur} = 0.36$; $M_{clear} = 0.39$, $SD_{clear} = 0.24$) spent significantly less time viewing the mouth than the nonautistic group $(M_{blur} = 0.85, SD_{blur} = 0.32; M_{clear} = 0.72, SD_{clear} = 0.35)$ did. We also explored whether blurring eyes changed children's looking time on the nose and the other area. Results only showed a significant effect of group for both areas, please see the Supplemental materials for detail (see Figure S1).

2.2.2 Blurring eyes enhanced the McGurk effect in autism

We further tested the group difference of the three kinds of responses (i.e., auditory responses "ba," visual responses "ga," and McGurk responses "da") in the clear-eyes and blurred-eyes condition separately and found that the autistic group showed less McGurk effect than the nonautistic group in both conditions (see Figure S2 in Supplemental materials for detailed information).

To examine the condition and group differences of the McGurk effect ("da" response), we performed a two-way repeated measures permutation ANOVA with Condition (clear-eyes vs. blurred-eyes) as the within-subject factor and Group (AC vs. NAC) as the betweensubject factor using the R package "permuco" default method (Frossard & Renaud, 2019; R Core Team, 2017). The results showed a significant main effect of Group, F(1, 58) = 25.56, permutation p = 0.0002, $\eta_{\rm p}^2 = 0.31$, and a significant Group × Condition interaction, F(1, 58) = 5.82, permutation p = 0.02, $\eta_p^2 = 0.09$, but no main effect of Condition, F(1, 58) = 1.80, permutation p = 0.19, $\eta_p^2 = 0.03$. We further conducted a Wilcoxon signed-rank test to examine the differences in the McGurk effect for each group. The results showed that the autistic group had a stronger McGurk effect, z = 2.53, p = 0.01, r = 0.46, in the blurred-eyes condition than in the clear-eyes condition, and that the nonautistic group showed a similar McGurk effect in two conditions, z = 0.92, p = 0.36, r = 0.17 (see Figure 4).

In summary, for AC, blurring the speaker's eyes decreased their eyes-looking time, increased their mouth-looking time, and increased their audiovisual speech integration in the McGurk task compared with the clear-eyes condition. For NAC, blurring the speaker's eyes did not change their audiovisual speech integration in the McGurk task, although their eyes-looking time was decreased and mouth-looking time was increased compared with the clear-eyes condition.

FIGURE 3 Eyes-looking time and mouth-looking time in Experiment 1. *Note*. Eyes-looking time (a) and mouth-looking time (b) in the autistic and nonautistic groups in the clear-eyes condition and blurred-eyes condition in Experiment 1. Error bars represent SEMs. *** *p* < 0.001

FIGURE 4 Percentage of the McGurk effect in Experiment 1. Note. Percentage of the McGurk effect in the autistic and nonautistic groups under the two conditions in Experiment 1. Error bars represent SEMs. *p < 0.05

3 | EXPERIMENT 2

In this experiment, to explore whether cuing children's attention to the speaker's mouth or eyes could affect children's audiovisual speech integration in the McGurk task, we compared a cue-to-mouth condition, a cue-to-eyes condition, and a free-viewing condition. In these three conditions, we measured children's audiovisual speech perception employing the McGurk paradigm and tracked their eye movements.

3.1 | Method

3.1.1 | Participants

Forty AC (age range: 4.28-7.18 years; all boys) and 42 NAC (age range: 4.60-7.35 years; all boys) took part in the present study. AC were from a specialized school, and NAC were from a kindergarten and an elementary school. Identical to Experiment 1, all AC were diagnosed according

to the DSM-V criteria, and their diagnoses were further confirmed by the Chinese version of the AQ-Child (American Psychiatric Association, 2013; Auyeung et al., 2008). The two groups were matched for both age and IQ (see Table 1 for detailed information). IQ was also measured using the Chinese version of the WPPSI-IV (Wechsler, 2014). Among all participants, 25 AC (age range: 4.55-6.82 years; all boys) and 26 NAC (age range: 4.95-6.79 years; all boys) participated in both Experiment 1 and Experiment 2. For these participants, the two experiments were completed on the same day and Experiment 2 was completed after Experiment 1 and a short break. The experiment was approved by the research ethics committee of Peking University. Before the experiment, parents of all children provided written informed consent.

3.1.2 | Stimuli and procedures

The stimuli and apparatus used in this experiment were identical to those in the clear-eyes condition in Experiment 1. The present experiment also included a practice session and a formal session. The formal session began with eye movement calibration and included three conditions: cue-to-mouth, cue-to-eyes, and free-viewing. Each condition consisted of four trials of congruent "ba," four trials of congruent "ga," and 12 trials of incongruent "AbVg" (auditory "ba" + visual "ga"). In the cue-to-mouth condition, each trial began with a black screen with an oval at the position where the speaker's mouth would appear, and children were directed to look at the oval (see Figure 1b). If the children fixated on the oval area for at least 500 ms, the stimulus was presented. Finally, a black screen was displayed until the children responded. Children's responses were recorded by the experimenter's pressing of "b," "d," and "g" on the keyboard for responses of "ba," "da," and "ga" respectively. In the cue-to-eyes condition, the procedure was identical to that in the cue-to-mouth condition, except that the oval was present at the position where the speaker's eyes would appear. In the free-viewing condition, no oval was presented, and the stimulus was not displayed until the children kept viewing the black screen for at least 500 ms. Trials in each condition were presented in random order, and the order of the three conditions was counterbalanced among children. Children took rest after completing a condition. The experiment lasted for approximately 35 min.

3.1.3 | Data analysis

As for the eye movement data, we also computed children's *total looking time* on each AOI by using identical procedures to Experiment 1. As for the behavioral data, children also made three types of responses in Experiment 1. We also first computed children's percentages of each kind of response in each condition. We then performed non-parametric analyses as the data did not conform to the normal distribution.

3.2 Results

3.2.1 | Cuing to mouth increased the mouth-looking time and cuing to eyes increased the eyes-looking time

To explore whether cuing to the mouth or eyes could change looking time in the two groups on the eyes and the mouth, we conducted a $3 \times 2 \times 2$ repeated measures ANOVA on looking time with Condition (cue-to-mouth vs. cue-to-eyes vs. free-viewing) and Region (eyes vs. mouth) as the within-subject factors, and Group (AC vs. NAC) as the between-subject factor using the R package "bruceR." Results showed a significant main effect of Condition, F(2, 160) = 3.63, p = 0.03, $\eta_p^2 = 0.04$, a significant main effect of Region, F(1, 80) = 40.93, p < 0.001, $\eta_p^2 = 0.34$, and a significant main effect of Group, F(1, 80) = 4.83, p = 0.03, $\eta_p^2 = 0.06$. Results also showed a significant Condition × Region interaction, F(2, 160) = 38.91, p < 0.001, $\eta_p^2 = 0.33$. None of the Condition × Group interaction, F(1, 80) = -1.71, p = 0.18, $\eta_p^2 = 0.02$, the Region × Group interaction, F(1, 80) = 0.43, p = 0.51, $\eta_p^2 = 0.005$, or the Condition × Region × Group interaction, F(2, 160) = 0.94, p = 0.39, $\eta_p^2 = 0.01$, was significant.

For the significant Condition × Region interaction, we further conducted simple analyses to examine the condition difference of children's looking time on the eyes and the mouth. Results showed that children's looking time was significantly different among the three conditions for both the eyes, F(2, 80) = 30.60, p < 0.001, $\eta_p^2 = 0.43$, and the mouth region, F(2, 80) = 19.29, p < 0.001, $\eta_p^2 = 0.33$. Multiple comparisons showed that children spent longer time viewing the eyes in the cue-to-eyes condition than in the cue-to-mouth condition, t(80) = 7.82, p < 0.001, Cohen's d = 0.46, in the cue-to-eyes condition than in the free-viewing condition, t(80) = 3.46, p = 0.003, Cohen's d = 0.18, in the free-viewing condition than in the cue-to-mouth, t(80) = 4.79, p < 0.001, Cohen's d = 0.28 (all ps were corrected by Bonferroni corrections; Figure 5a). Multiple comparisons also showed that children spent longer time viewing the mouth in the cue-to-mouth condition than in the cue-to-eyes condition, t(80) = 6.11, p < 0.001, Cohen's d = 0.45, and in the cue-to-mouth condition than in the free-viewing

Developmental Science 🛛 🌋

condition, t(80) = 5.39, p < 0.001, Cohen's d = 0.43. In addition, children spent similar time viewing the mouth in the cue-to-eyes condition and free-viewing condition, t(80) = 0.48, p > 0.99, Cohen's d = 0.03 (all pswere corrected by Bonferroni correction; Figure 5b). We also explored whether cuing to the mouth or eyes could change children's looking time on the nose and the other area. Results only showed a significant effect of condition for each of both areas, please see the Supplemental materials for detail (Figure S3).

3.2.2 | Cuing to mouth enhanced the McGurk effect in autism

We tested the group differences of the three types of responses in the three conditions separately and found that the autistic group showed less McGurk effect than the nonautistic group in all three conditions (see Figure S4 in the Supplemental materials for detailed information).

We performed a two-way repeated measures permutation ANOVA to test the condition and group differences of the McGurk effect ("da" response) using the R package "permuco" default method (Frossard & Renaud, 2019). The results showed a significant main effect of Group, F(1, 80) = 10.00, permutation p = 0.003, $\eta_p^2 = 0.11$, a significant main effect of Condition, F(2, 160) = 7.51, permutation p = 0.0004, $\eta_p^2 = 0.09$, and a significant Group \times Condition interaction, F(2, 160) = 3.61, permutation p = 0.03, $\eta_p^2 = 0.04$ (Figure 6). We further examined the condition differences of the McGurk effect in each group. We found that the autistic group showed a stronger McGurk effect in the cue-to-mouth condition than in the cue-to-eyes condition, Z = 3.33, p = 0.003, r = 0.53, and in the cue-to-mouth condition than in the freeviewing condition. Z = 3.15. p = 0.003. r = 0.50. and showed a similar McGurk effect in the cue-to-eyes condition and the free-viewing condition, Z = 1.70, p = 0.09, r = 0.27, by conducting Wilcoxon signed-rank tests (all ps were corrected by FDR correction; Figure 6). However, we found that the nonautistic group showed similar McGurk effects in three conditions, F(1, 80) = 0.64, permutation p = 0.53, $\eta_p^2 = 0.02$, by performing a one-way repeated measures permutation ANOVA. That is, the McGurk effect in the autistic group increased in the cueto-mouth condition compared with the other two conditions, but the McGurk effect in the nonautistic group did not differ in the three conditions.

To examine the potential practice effects for those participants who were in both experiments, we conducted a Wilcoxon signed-rank tests to examine the McGurk effect difference in the 26 nonautistic and 25 AC who participated in both Experiments 1 and 2. Particularly, we compared the McGurk effect in the baseline conditions in two experiments (i.e., clear-eyes condition in Experiment 1 and free-viewing condition in Experiment 2) for each group respectively. Results showed that the nonautistic group was similar in the percentages of McGurk effect in the two experiments, z = 0.72, p = 0.47, r = 0.18, indicating no practice effect in the nonautistic group. The autistic group, however, showed a larger McGurk effect in Experiment 2 than in Experiment 1, z = 3.34, p = 0.001, r = 0.67, indicating the existence of practice effects in the autistic group.

FIGURE 5 Eyes-looking time and mouth-looking time in Experiment 2. *Note.* Eyes-looking time (a) and mouth-looking time (b) in the autistic and nonautistic groups under the three conditions in Experiment 2. Error bars represent SEMs. ***p* < 0.01. ****p* < 0.001

FIGURE 6 Percentage of the McGurk effect in Experiment 2. Note. Percentage of the McGurk effect in the three conditions for the autistic and nonautistic groups in Experiment 2. Error bars represent SEMs. **p < 0.01

In sum, for AC, cuing to the mouth increased their mouth-looking time and increased their audiovisual speech integration in the McGurk task compared with the other two conditions—"Cue-to-eyes" and "Free-viewing." For NAC, cuing to the mouth did not change their audiovisual speech integration in the McGurk task, although their mouth-looking time also increased compared with the other two conditions.

4 | GENERAL DISCUSSION

In the present study, we aimed to increase audiovisual speech integration in the McGurk task in AC by increasing their mouth-looking time. In two experiments, we managed to increase the mouth-looking time by blurring the speaker's eyes (Experiment 1) and cuing children's first fixation to the speaker's eyes or mouth (Experiment 2). We found that blurring the speaker's eyes and cuing the first fixation to the speaker's mouth could enhance audiovisual speech integration in the McGurk task in AC. At the same time, we found that blurring the speaker's eyes and cuing the first fixation to the speaker's mouth also increased the mouth-looking time in NAC, but did not enhance the audiovisual speech integration in the McGurk task in NAC.

First, blurring the speaker's eyes and cuing children's first fixation to the speaker's mouth increased the mouth-looking time and increased audiovisual speech integration in the McGurk task in AC. These findings confirmed our hypotheses. Previous studies found that mouth-looking time positively correlated with audiovisual speech integration in the McGurk task in AC (Feng et al., 2021) and nonautistic adults (Gurler et al., 2015). To increase audiovisual speech integration in the McGurk task in AC, we adopted two manipulations in two experiments to increase their mouth-looking time-blurring the speaker's eyes and cueing children's first fixation to the speaker's mouth. We found that these two manipulations increased the mouth-looking time in AC, as expected. At the same time, we also found that these two manipulations enhanced audiovisual speech integration in the McGurk task in AC. Our findings extend the previous evidence on the relationship between mouth-looking time and audiovisual speech integration in the McGurk task in AC (Feng et al., 2021) by further revealing that audiovisual speech integration in the McGurk task in AC could be increased by increasing their mouth-looking time. Our findings not only deepen the understanding of the underlying mechanisms of audiovisual speech integration in the McGurk task in autism, but also provide important insights for supporting strategies targeting audiovisual speech integration in AC. In addition, our findings confirmed the role of visual information for speech perception in AC (Newman et al., 2021).

Second, for NAC, both blurring the speaker's eyes and cuing to the speaker's mouth increased the mouth-looking time but did not enhance their audiovisual speech integration in the McGurk task. This finding was consistent with a previous study in NAC, which found that audiovisual speech integration in the McGurk task in NAC did not correlate with mouth-looking time but correlated with eyes-looking time (Feng et al., 2021). However, another study in adults found that audiovisual speech integration correlated with mouth-looking time (Gurler et al., 2015). These controversies indicate that the relationship between audiovisual speech integration in the McGurk task and visual attention to different core facial features could vary with age. One possible

explanation is that face-looking patterns change with age: NAC spent more time viewing the mouth compared to adults (Nakano et al., 2010). For NAC, whose mouth-looking time is relatively long, it might be difficult for them to increase their audiovisual speech integration in the McGurk task by increasing their mouth-looking time (Nakano et al., 2010). For AC, who showed less mouth-looking time compared with NAC, their audiovisual speech integration in the McGurk task might be enhanced by increasing mouth-looking time (Nakano et al., 2010; Feng et al., 2021). NAC's audiovisual speech integration could depend on other factors, such as neural development in brain areas such as the superior temporal gyrus and inferior frontal gyrus (Jones & Callan, 2003; Tryfon et al., 2018). Future research should explore the potential influence of these factors on audiovisual speech integration in both NAC and AC.

Our finding that increasing mouth-looking time in AC could enhance their performance in McGurk task should be considered with caution. As the McGurk effect is only an indicator of audiovisual speech integration, the changes of McGurk performance in AC does not necessarily mean that there were changes in their general audiovisual speech integration ability. Improving the ability of general audiovisual speech integration in autism does require a relatively long time of professional supports. In future studies, we could conduct trainings that last for several weeks or months and examine whether changing face attention in AC could increase their general audiovisual speech integration. We could also further examine whether such supports could have cascading effects on their language development and communication abilities (Feldman et al., 2018; Lewkowicz & Hansen-Tift, 2012; Righi et al., 2018; Tenenbaum, et al., 2017; Young et al., 2009).

The present study revealed group and condition differences in McGurk percept. One might argue that these differences could reflect a decision bias rather than truly reflecting perceptual processing. We propose that a genuine audiovisual perceptual integration had taken place based on the following considerations. First, perceptual processing entails earlier, distinct interaction of audiovisual events before these events could be potentially handled by a later decision mechanism (Mercier & Cappe, 2022; van Wassenhove et al., 2005). In the McGurk task, previous studies have shown the audiovisual interaction in integration starts as early as 100 ms after the onset of audiovisual stimuli, which is characterized by the N1/P2 amplitude reductions (van Wassenhove et al., 2005). Second, the McGurk effect demonstrated in the two groups was comparable to previous studies (e.g., Feng et al., 2021), indicating that the McGurk effect was stable across different studies (e.g., Feng et al., 2021). Third, for the research method, we adopted a trial-by-trial, fully-randomized arrangement of the stimuli presentations in each condition. This arrangement largely prevented the participants from purposely adopting specific strategies (including potential expectations for a certain pattern of responses) in the present study. In sum, we believe both the research protocol and time window of cross-modal interaction in the present task favored an account of genuine perceptual processing.

We also found that there existed some practice effects in AC but not in NAC. The lack of practice effects in the nonautistic group might be explained by their relatively high performance of McGurk effect, which

is difficult to enhance. The practice effect in the autistic group implicates the possibility of improving their McGurk effect through relevant supports by taking advantage of the practice effects.

The present study found that audiovisual speech integration in the McGurk task could be increased in AC by changing their mouth-looking time. This finding has several theoretical and practical implications. Theoretically, it implies that attentional allocation (i.e., spent less time viewing core features, like the mouth) in AC is one of the mechanisms underlying the less audiovisual speech integration in the McGurk task in AC. In addition, audiovisual speech integration in the McGurk task in AC could be enhanced but still could not catch up with that in NAC, which implies that the less audiovisual speech integration in AC could also be explained by other factors, such as their difficulties in central coherence (Happé & Frith, 2006), temporal processing (Stevenson et al., 2014), and predictive coding (Baum et al., 2015). In future studies, we could explore the factors underlying reduced audiovisual speech integration in AC. Practically, it implies that audiovisual speech integration supports could be carried out in AC, especially those at an early age, by taking measures to increase their mouth-looking time. Further, our findings indicate that blurring and cuing could effectively manipulate children's attention. In future studies, we could employ these measures to manipulate children's attention, especially in the support for AC.

The present study has some limitations. One limitation is that our participants were all boys, and our findings were only confined to boys. In future studies, we could recruit a group of autistic girls to explore the potential gender differences and further explore whether blurring the speaker's eyes or cuing to the speaker's mouth could enhance audiovisual speech integration in the McGurk task in autistic girls. Another limitation is that our participants were 4- to 8-year-old children who had developed a certain level of language ability. Blurring the speaker's eyes or cuing to the speaker's mouth might be more effective in improving audiovisual speech integration in the McGurk task in infants or toddlers who are in the initial stages of language development. In future studies, infants or toddlers could be recruited for further exploration. In addition, our participants have been diagnosed in licensed hospitals by professional pediatricians according to the criteria of the DSM-V. Although we have acknowledged the importance of including Autism Diagnostic Observation Schedule (ADOS), we did not do so given that the official Chinese version of ADOS has not yet been translated and published officially, and the reliable administrators are highly limited in China. Using this gold standard to confirm the diagnosis of autism is recommended for future studies. Last, we included only 12 incongruent trials for each condition of the two experiments considering AC's reduced cooperation and sustained attention to complete the task. The limited number of trials might make the task not sensitive enough to detect the differences between condition and groups. Future studies could include more trials to increase the sensitivity of the McGurk task.

In summary, the present study increased the mouth-looking time by blurring the eyes and cueing to the mouth, and these manipulations could increase audiovisual speech integration in the McGurk task in AC, but not in NAC. These findings contribute to a deeper understanding of the underlying mechanisms of audiovisual speech integration in autism. This finding could also provide insights for the development of supports to increase audiovisual speech integration in AC.

ACKNOWLEDGMENTS

The authors are grateful to Zipeng Ma, Fuli Liu, Yanhong Wu, Yinan Lv, and the staff in Qingdao Elim School, for their generous assistance in completing the study. This work was supported by Key-Area Research and Development Program of Guangdong Province (2019B030335001), National Natural Science Foundation of China (31871116, 62061136001, 31861133012, 32271116), Philosophy and Social Science Foundation of Hunan Province (19YBQ109), Outstanding Youth Foundation of Education Department of Hunan Province (21B0004), and Natural Science Foundation of Hunan Province of China (2022JJ40580).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Data were available upon reasonable request.

ETHICS APPROVAL STATEMENT

The experiment was performed in compliance with the institutional guidelines set by the Ethics Committee of School of Psychological and Cognitive Sciences, Peking University, China, in accordance to the 1975 Declaration of Helsinki concerning human and animal rights.

REFERENCES

- Alsius, A., Navarra, J., Campbell, R., & Soto-Faraco, S. (2005). Audiovisual integration of speech falters under high attention demands. *Current Biology*, 15(9), 839–843. https://doi.org/10.1016/j.cub.2005.03.046
- Alsius, A., Navarra, J., & Soto-Faraco, S. (2007). Attention to touch weakens audiovisual speech integration. *Experimental Brain Research*, 183, 399–404. https://doi.org/10.1007/s00221-007-1110-1
- Altieri, N., Pisoni, D. B., & Townsend, J. T. (2011). Some behavioral and neurobiological constraints on theories of audiovisual speech integration: A review and suggestions for new directions. *Seeing and Perceiving*, 24(6), 513–539. https://doi.org/10.3389/fpsyg.2014.00257
- American Psychiatric Association (2013). *Diagnostic and statistical manual of mental disorders* (5th edn.). American Psychiatric Press.
- Auyeung, B., Baron-Cohen, S., Wheelwright, S., & Allison, C. (2008). The autism spectrum quotient: Children's version (AQ-Child). Journal of Autism and Developmental Disorders, 38, 1230–1240. https://doi.org/10. 1007/s10803-007-0504-z
- Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). Another advanced test of theory of mind: Evidence from very high functioning adults with autism or Asperger syndrome. *Journal of Child Psychol*ogy and Psychiatry, 38, 813–822. https://doi.org/10.1111/j.1469-7610. 1997.tb01599.x
- Baum, S. H., Stevenson, R. A., & Wallace, M. T. (2015). Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. *Progress in Neurobiology*, 134, 140–160. https://doi. org/10.1016/j.pneurobio.2015.09.007
- Bebko, J. M., Schroeder, J. H., & Weiss, J. A. (2014). The McGurk effect in children with autism and Asperger syndrome. *Autism Research*, 7, 50–59. https://doi.org/10.1002/aur.1343

- Brainard, D. H. (1997). The psychophysics toolbox. *Spatial Vision*, 10, 433–436. https://doi.org/10.1163/156856897x00357
- Chawarska, K., & Shic, F. (2009). Looking but not seeing: Atypical visual scanning and recognition of faces in 2 and 4-year-old children with autism spectrum disorder. *Journal of Autism Developmental Disorder, 39*, 1663–1672. https://doi.org/10.1007/s10803-009-0803-7
- de Wit, T. C. J., Falck-Ytter, T., & von Hofsten, C. (2008). Young children with autism spectrum disorder look differently at positive versus negative emotional faces. *Research in Autism Spectrum Disorders*, 2, 651–659. https://doi.org/10.1016/j.rasd.2008.01.004
- Feldman, J. I., Dunham, K., Cassidy, M., Wallace, M. T., Liu, Y., & Woynaroski, T. G. (2018). Audiovisual multisensory integration in individuals with autism spectrum disorder: A systematic review and meta-analysis. *Neuroscience Biobehavior Reviews*, 95, 220–234. https://doi.org/10.1016/j. neubiorev.2018.09.020
- Feng, S., Lu, H., Wang, Q., Li, T., Fang, J., Chen, L., & Yi, L. (2021). Face-viewing patterns predict audiovisual speech integration in autistic children. *Autism Research*, 14, 2592–2602. https://doi.org/10.1002/aur.2598
- Frossard, J., & Renaud, O. (2019). permuco: Permutation tests for regression, (repeated measures) ANOVA/ANCOVA and comparison of signals. R package version 1.1.0. https://CRAN.R-project.org/package=permuco
- Grynszpan, O., Simonin, J., Martin, J. C., & Nadel, J. (2012). Investigating social gaze as an action-perception online performance. *Frontiers in Human Neuroscience*, 6(6), 94. https://doi.org/10.3389/fnhum.2012. 00094
- Gurler, D., Doyle, N., Walker, E., Magnotti, J., & Beauchamp, M. (2015). A link between individual differences in multisensory speech perception and eye movements. Attention, Perception, & Psychophysics, 77, 1333–1341. https://doi.org/10.3758/s13414-014-0821-1
- Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. *Journal of Autism and Devel*opmental Disorders, 36(1), 5–25. https://doi.org/10.1007/s10803-005-0039-0
- Iarocci, G., Rombough, A., Yager, J., Weeks, D. J., & Chua, R. (2010). Visual influences on speech perception in children with autism. Autism, 14, 305– 320. https://doi.org/10.1177/1362361309353615
- Irwin, J. R., Tornatore, L. A., Brancazio, L., & Whalen, D. H. (2011). Can children with autism spectrum disorders "hear" a speaking face? *Child Development*, 82, 1397–1403. https://doi.org/10.1111/j.1467-8624.2011.01619.x
- Jones, J., & Callan, D. E. (2003). Brain activity during audiovisual speech perception: An fMRI study of the McGurk effect. *NeuroReport*, 14(8), 1129–1133.
- Kleiner, M., Brainard, D., & Pelli, D. (2007). What's new in Psychtoolbox-3? *Perception*, 36, ECVP Abstract Supplement.
- Lewkowicz, D. J., & Hansen-Tift, A. M. (2012). Infants deploy selective attention to the mouth of a talking face when learning speech. Proceedings of the National Academy of Sciences of the United States of America, 109(5), 1431–1436.
- McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. *Nature*, 264, 746–748. https://doi.org/10.1023/A:1005592401947
- Mercier, M. R., & Cappe, C. (2022). The interplay between multisensory integration and perceptual decision making. *NeuroImage*, 222, 116970.
- Mongillo, E. A., Irwin, J. R., Whalen, D. H., Klaiman, C., Carter, A. S., & Schultz, R. T. (2008). Audiovisual processing in children with and without autism spectrum disorders. *Journal of Autism Developmental Disorder*, 38, 1349– 1358. https://doi.org/10.1007/s10803-007-0521-y
- Moriuchi, J. M., Klin, A., & Jones, W. (2017). Mechanisms of diminished attention to eyes in autism. *American Journal of Psychiatry*, 174(1), 26–35. https://doi.org/10.1176/appi.ajp.2016.15091222
- Nakano, T., Tanaka, K., Endo, Y., Yamane, Y., Yamamoto, T., Nakano, Y., Ohta, H., Kato, N., & Kitazawa, S. (2010). Atypical gaze patterns in children and adults with autism spectrum disorders dissociated from developmental changes in gaze behaviour. *Proceedings of the Royal Society B*, 277, 2935– 2943. https://doi.org/10.1098/rspb.2010.0587

- Newman, R. S., Kirby, L. A., Von Holzen, K., & Redcay, E. (2021). Read my lips: Perception of speech in noise by preschool children with autism and the impact of watching the speaker's face. *Journal of Neurodevelopmental Disorders*, 13, online ahead of print.
- Olsen, A. (2012). The Tobii I-VT fixation filter: Algorithm Description. Tobii I-VT Fixation Filter-white paper [white paper]. Retrieved from: http://www.tobii.com/no/eye-tracking-research/global/library/whitepapers/the-tobii-i-vt-fixation-filter/
- Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. *Spatial Vision*, 10, 437–442. https:// doi.org/10.1163/156856897x00366
- Pelphrey, K. A., Sasson, N. J., Reznick, J. S., Paul, G., Goldman, B. D., & Piven, J. (2002). Visual scanning of faces in autism. *Journal of Autism and Devel*opmental Disorders, 32, 249–261. https://doi.org/10.1016/j.tics.2012.08. 009
- Righi, G., Tenenbaum, E. J., Mccormick, C., Blossom, M., & Sheinkopf, S. J. (2018). Sensitivity to audio-visual synchrony and its relation to language abilities in children with and without ASD. *Autism Research*, 11, 645–653. https://doi.org/10.1002/aur.1918
- R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. URL http://www.R-project.org/
- Shic, F., Macari, S., & Chawarska, K. (2014). Speech disturbs face scanning in 6-month-old infants who develop autism spectrum disorder. *Biological Psychiatry*, 75(3), 231–237. https://doi.org/10.1016/j.biopsych.2013.07. 009
- Stevenson, R. A., Siemann, J. K., Schneider, B. C., Eberly, H. E., Woynaroski, T. G., Camarata, S. M., & Wallace, M. T. (2014). Multisensory temporal integration in autism spectrum disorders. *Journal of Neuroscience*, 34, 691–697. https://doi.org/10.1523/JNEUROSCI.3615-13. 2014
- Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. *Trends in Cognitive Sciences*, 14, 400–410. https://doi.org/10.1016/j.tics. 2010.06.008
- Tenenbaum, E. J., Amso, D., Righi, G., & Sheinkopf, S. (2017). Attempting to "increase intake from the input": Attention and word learning in children with autism. *Journal of Autism and Developmental Disorders*, 47, 1791–1805. https://doi.org/10.1007/s10803-017-3098-0
- Tiippana, K., Andersen, T. S., & Sams, M. (2004). Visual attention modulates audiovisual speech perception. *European Journal of Cognitive Psychology*, 16(3), 457–472. https://doi.org/10.1080/09541440340000268
- Tryfon, A., Foster, N., Sharda, M., & Hyde, K. (2018). Speech perception in autism spectrum disorder: An activation likelihood estimation meta-analysis. *Behavioural Brain Research*, 338, 118–127.
- Tsang, T., Naples, A. J., Barney, E. C., Xie, M., Bernier, R., Dawson, G., Dziura, J., Faja, S., Jeste, S. S., McPartland, J. C., Nelson, C., Murias, M., Seow, H., Sugar, C., Webb, S. J., Shic, F., & Johnson, S. (2022). Attention allocation during exploration of visual arrays in ASD: Results from the ABC-CT fea-

sibility study. Journal of Autism and Developmental Disorders, online ahead of print. https://doi.org/10.1007/s10803-022-05569-0

- van Wassenhove, V., Grant, K. W., & Poeppel, D. (2005). Visual speech speeds up the neural processing of auditory speech. *Proceedings of the National Academy of Sciences*, 102(4), 1181–1186. https://doi.org/10.1073/pnas. 0408949102
- Wang, Q., Hoi, S. P., Wang, Y., Song, C., & Yi, L. (2020). Out of mind, out of sight? investigating abnormal face scanning in autism spectrum disorder using gaze-contingent paradigm. *Developmental Science*, 23, e12856. https://doi.org/10.1111/desc.12856
- Wang, Q., Wall, C. A., Barney, E. C., Bradshaw, J. L., Macari, S. L., Chawarska, K., & Shic, F. (2013). Promoting social attention in 3-year-olds with ASD through gaze-contingent eye tracking. *Autism Research*, 13, 61–73. https://doi.org/10.1002/aur.2199
- Wechsler, D. (2014). Wechsler Preschool and Primary Scale of Intelligence– Fourth CN Edition (WPPSI-IV CN). (Li, Y., Trans, Z. J., & Li, Y., Eds.). King-May Company China.
- Woynaroski, T. G., Kwakye, L. D., Foss-Feig, J. H., Stevenson, R. A., Stone, W. L., & Wallace, M. T. (2013). Multisensory speech perception in children with autism spectrum disorders. *Journal of Autism and Developmental Disorders*, 43(12), 2891–2902. https://doi.org/10.1007/s10803-013-1836-5
- Young, G. S., Merin, N., Rogers, S. J., & Ozonoff, S. (2009). Gaze behavior and affect at 6 months: Predicting clinical outcomes and language development in typically developing infants and infants at risk for autism. *Developmental Science*, 12(5), 798–814. https://doi.org/10.1111/j.1467-7687.2009.00833.x
- Zhang, J., Meng, Y., He, J., Xiang, Y., Wu, C., Wang, S., & Yuan, Z. (2019). McGurk effect by individuals with autism spectrum disorder and typically developing controls: A systematic review and meta-analysis. *Journal* of Autism and Developmental Disorders, 49, 34–43. https://doi.org/10. 1007/s10803-018-3680-0

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Feng, S., Wang, Q., Hu, Y., Lu, H., Li, T., Song, C., Fang, J., Chen, L., & Yi, L. (2022). Increasing Audiovisual Speech Integration in Autism Through Enhanced Attention to Mouth. *Developmental Science*, e13348. https://doi.org/10.1111/desc.13348